Outstanding Issues in Polar Ozone Loss

Ross Salawitch¹, Tim Canty¹, Markus Rex², Katja Frieler²

- ¹ Jet Propulsion Laboratory, Caltech, Pasadena Ca
- ² Alfred-Wegener-Institut, Potsdam, Germany

SOSST Meeting, June 2004

Future Evolution of Arctic Ozone – GISS Model

Future Evolution of Arctic Ozone - Many Models

CCMs – Chemistry-Climate Models

Ozone Loss Versus V_{PSC}

Impact of Climate Change on Arctic Ozone Loss

~ 15 DU additional ozone loss per Kelvin cooling of the Arctic stratosphere

Comparison with SLIMCAT – Old Version

SLIMCAT "Old" underestimates sensitivity of Arctic ozone loss to climate change by a factor of three

Rex et al., GRL, 2004

Relative Influence of Chemistry and Transport on Arctic Ozone Trends: Model

"Using a state-of-the-art three-dimensional stratospheric chemistry-transport model [e.g., "SLIMCAT Old"], we find that north of 63°N, on average, dynamical variations dominate the inter-annual variability of total column ozone, with little evidence for a trend towards more wintertime chemical depletion of ozone"

Chipperfield and Jones, Nature, 1999

Relative Influence of Chemistry and Transport on Arctic Ozone Trends: Data

What's Wrong with "SLIMCAT Old"?

- 1) Underestimates rate of chemical ozone loss:
 - ClO ClOOCl kinetics
 - BrO abundance
- 2) Underestimates denitrification
- 3) Are problems with "SLIMCAT Old" typical of all CCM models?
 - Need to look "inside" CCMs
 - First Step: CCM Validation Meeting, Garmisch, Nov 2003 Chipperfield and Salawitch "leads" for chemistry validation

Measured and Modeled CIO-CIOOCI: JPL 2000 Kinetics

Measured and Modeled CIO-CIOOCI: JPL 2000 Kinetics

$$\beta \text{ Ratio} = \frac{ \left[\text{ ClO model} \times \text{ClO model} \right] / \text{ ClOOCl model} }{ \left[\text{ ClO meas} \times \text{ClO meas} \right] / \text{ ClOOCl meas} }$$

$$\approx \frac{ \left(\text{J / k}_F \right) \text{ model} }{ \left(\text{J / k}_F \right) \text{ actual} }$$

Stimpfle et al.. JGR, 2004

Measured and Modeled CIO-CIOOCI: JPL 2002 Kinetics

Stimpfle et al.. JGR, 2004

Measured and Modeled CIO-CIOOCI: JPL 2002 Kinetics + Burkholder Cross Section

Chemical Ozone Loss Rates: Measured

See Richard et al., GRL, 2000, Hoppel et al., JGR, 2002, Rex et al., JGR, 2002 & Salawitch et al., JGR, 2002 for demonstrations of the validity of this approach for accurately quantifying observed chemical ozone loss rates.

Chemical Ozone Loss Rates: Measured

Figure 3-26, WMO 2003

See also Richard *et al.*, *GRL*, 2000, Hoppel *et al.*, *JGR*, 2002, Rex *et al.*, *JGR*, 2002 & Salawitch *et al.*, *JGR*, 2002 for demonstrations of the validity of various approaches for accurately quantifying observed chemical ozone loss rates.

Stimpfle et al.. JGR, 2004

Modeled & Measured Ozone Loss POAMIII & SLIMCAT Arctic, 2002-2003

Modeled Ozone Loss:

SLIMCAT Pseudo Passive

Red: photochemical model with **JPL 2002 kinetics**, BrOx=20 ppt, ClOx=3.2 ppb

Green: (as above) with ClOx=3.7 ppb

Blue: same as green, but with **Burkholder Cloocl cross sections**

Hoppel et al., PP-1

Nighttime OCIO: Indicator of BrO?!?

Nighttime OCIO: Indicator of BrO?!?

Model Constrained by BrO_x , inferred from measured BrO, for <u>various yields of BrO+ClO \rightarrow BrCl + O_2 </u>

Nighttime OCIO: Indicator of BrO?!?

BrO + CIO Branching Ratio: Laboratory

Comparison with SLIMCAT – Old Version

SLIMCAT "Old" underestimates sensitivity of Arctic ozone loss to climate change by a factor of three

Rex et al., GRL, 2004

Comparison with SLIMCAT – New Version

New SLIMCAT version reproduces the slope and scatter of data reasonably well.

New SLIMCAT: JPL 2002 + Burkholder Cross Section + NAT-based Denit. Scheme

Challenges

- 1. Separation of chemistry vs transport using SOSST data
 - column ozone, multiple Arctic winters
- 2. Measured and modeled ozone loss rates, Antarctic vortex to complement many studies focused on Arctic vortex
 - value added if tied to measured ClO
- 3. Abundance of BrO in the vortices
 - constraints from nighttime SOSST OCIO ?!?
- 4. Stability of Arctic vortex in a changing climate
 - tests of: dynamical properties (e.g., heat flux vs T)
 transport properties (e.g., tracers) within CCMs
 (Chemistry-Climate Models)

V_{PSC} over the past ~40 years

~ Factor of three increase in max. V_{PSC} over the past four decades

↓ PWD ⇒ ↑ Arctic Vortex Strength

What is the effect of ↑ GHGs on PWD:

- \preprox PWD due to increased westerly winds in the **subtropics** (Shindell et al. 1998)
- ↓ PWD due to stronger vertical shear of the zonal wind at **high latitudes** (Limpasuvan and Hartmann, 2000)
- ↑ PWD due to weaker vertical shear of the zonal wind at **high latitudes** (Hu and Tung, 2002)
- ↑ PWD due to decreases in the **NAO** (North Atlantic Oscillation) index, driven in part by ↑ **SSTs** from a coupled ocean-atmosphere climate model (Schnadt and Dameris, 2003)

↓ PWD ⇒ ↑ Arctic Vortex Strength

Model evaluation is needed:

- Dynamics: model heat flux (100 mb, Jan-Feb) vs model T (50 mb, Feb-Mar) compared to observations: "Newman Plot" see Fig 4 of Austin et al., 2003 & Fig 3-43, WMO 2003
- Transport: comparison of modeled and measured tracers, for tracers with a variety of lifetimes:
 - SAGE and HALOE O₃ in LS
 - HALOE CH₄
 - Aura N₂O, CFCs, CH₄, O₃
 - Sub-orbital SF₆, CO₂, CH₃Br, etc.

Extra Material To Follow

January ozone loss – model

Box model based on ClO_x , BrO_x , O_x chemistry, run along Match trajectories to calculate ClO_x that is required to explain the observed loss rates.

During cold Arctic Januaries ozone loss is consistently faster than can be explained with standard (JPL 2002) reaction kinetics

CIO_x kinetics – results from recent field campaigns

- SOLVE => Cl₂O₂ photolysis faster (Stimpfle et al., JGR 109, 2004)
- EUPLEX => Cl₂O₂ thermal decomposition faster (von Hobe et al., Koch et al., posters 488, 466)
- Here also: CIO + CIO from Bloss et al., BrO_x based on Pfeilsticker et al.

With these changes in reaction kinetics the January ozone loss problem may be largely resolved (see also poster 460, Frieler et al.)

Photochemical Model Description – ClOx

- Photochemical model run along back trajectories, originating from the ER-2 flight track, for 10 day periods
- ER-2 observations of ClOx and O₃ used to initialize model
- ClOx allowed to increase linearly, "backwards in time" to match ER-2 observations obtained at earlier times

 $CIOx \equiv CIO + 2 \times CIOOCI$

Photochemical Model Description : CIOx Partitioning

- Photochemical model run along back trajectories, originating from the ER-2 flight track, for 10 day periods
- ER-2 observations of ClOx and O₃ used to initialize model
- ClOx allowed to increase linearly, "backwards in time" to match ER-2 observations obtained at earlier times
- BrOx specified from Pfeilsticker *et al*. DOAS meas. of BrO from Kiruna, winter of 1999/2000
- Model provides reasonably good simulation of the observed partitioning between ClO & ClOOCl along the ER-2 flight track

JPL 2000 Kinetics Used, Unless Otherwise Specified

Chlorine Budget

Please see Wilmouth et al. poster for details

Chlorine Budget II

From Wilmouth et al. poster

Challenges – Polar Ozone

- 1. Separation of chemistry vs transport using SOSST data
 - column ozone, multiple Arctic winters
- 2. Measured and modeled ozone loss rates, Antarctic vortex to complement many studies focused on Arctic vortex
 - value added if tied to measured ClO
- 3. Abundance of BrO in the vortices
 - constraints from nighttime SOSST OCIO ?
- 4. Stability of Arctic vortex in a changing climate
 - tests of: dynamical properties (e.g., heat flux vs T)
 transport properties (e.g., tracers) within CCMs
 (Chemistry-Climate Models)

↓ PWD ⇒ ↑ Arctic Vortex Strength

What is the effect of ↑ GHGs on PWD:

- \preprox PWD due to increased westerly winds in the **subtropics** (Shindell et al. 1998)
- ↓ PWD due to stronger vertical shear of the zonal wind at **high latitudes** (Limpasuvan and Hartmann, 2000)
- ↑ PWD due to weaker vertical shear of the zonal wind at **high latitudes** (Hu and Tung, 2002)
- ↑ PWD due to decreases in the **NAO** (North Atlantic Oscillation) index, driven in part by ↑ **SSTs** from a coupled ocean-atmosphere climate model (Schnadt and Dameris, 2003)

↓ PWD ⇒ ↑ Arctic Vortex Strength

Model evaluation is needed:

- Dynamics: model heat flux (100 mb, Jan-Feb) vs model T (50 mb, Feb-Mar) compared to observations: "Newman Plot" see Fig 4 of Austin et al., 2003 & Fig 3-43, WMO 2003
- Transport: comparison of modeled and measured tracers, for tracers with a variety of lifetimes:
 - SAGE and HALOE O₃ in LS
 - HALOE CH₄
 - Aura N₂O, CFCs, CH₄, O₃
 - Sub-orbital SF₆, CO₂, CH₃Br, etc.

Challenges – Mid-Latitude Ozone

- 1. Definition of trends in O_3 vs altitude
 - trend quality SOSST O₃ below 20 km
- 2. Accuracy of tropospheric O₃ retrievals
 - validation of SOSST tropospheric ozone !!!
- 3. Definition of trends in H₂O vs altitude
 - validity of SOSST H₂O for trends?
- 4. Stratospheric Surface Area Climatology
 - effects of small particles on SSA for background periods
- 5. Atmospheric Transport
 - tracer fields: CH₄, HF
 - use of O₃, H₂O, SSA as tracers

Challenges – SOSST Future

- 1. Future measurement needs for stratospheric ozone trends
 - definition of info obtained from various tracers
- 2. Future measurement needs for tropospheric ozone
 - validity of SOSST O₃
 - measurements to compliment Aura
- 3. Future measurement needs for water cycle
 - value of H₂O isotopes
 - which tracers needed
- 4. Other scientific issues: climate change
 - how to improve on SAGE II, HALOE, POAM III